Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.
نویسندگان
چکیده
In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior.
منابع مشابه
Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents
BACKGROUND Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. METHODS Dose-response curves...
متن کاملInhibition of DAT function attenuates manganese accumulation in the globus pallidus.
Manganese (Mn) is an essential nutrient, though exposure to high concentrations may result in neurotoxicity characterized by alterations in dopamine neurobiology. To date, it remains elusive how and why Mn targets dopaminergic neurons although recently the role of the dopamine transporter has been suggested. Our primary goal of this study was to examine the potential roles of the monoamine tran...
متن کاملEarly Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats
BACKGROUND Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. OBJECTIVES To determine whether early postnatal oral Mn exposure causes lasting a...
متن کاملDopamine transporter binding in the rat striatum is increased by gestational, perinatal, and adolescent exposure to heptachlor.
Heptachlor is a persistent cyclodiene pesticide that affects GABAergic function. Recent reports indicate that heptachlor exposure also alters dopamine transporter (DAT) expression and function in adult mice. The aim of this study was to determine whether gestational, perinatal, and/or adolescent heptachlor exposure in rats altered dopamine-receptor and DAT binding. Adolescent exposure to dieldr...
متن کاملIron-Responsive Olfactory Uptake of Manganese Improves Motor Function Deficits Associated with Iron Deficiency
Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 154 2 شماره
صفحات -
تاریخ انتشار 2008